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1 Derivative

We begin this chapter by introducing a crucial definition to the understanding of derivatives represented by figure
1. It is very similar to the average rate of change formula covered in the introduction to limits packet. The
main difference however, is that now we will take the limit as h (our displacement) approaches 0. Lets think on
what that means. If we look at figure 1 we have x0 and x0 + h. we also have a displacement from the first point
P to the point Q represented by h. If we were using the average rate of change formula we would be capable
to connect the two points with a secant line and through rise over run find their average rate of change. In here
however, because we take the limit as h→ 0 the distance from point P and point Q becomes so small that point Q
is at the exact same spot as point P . Therefore the use of a tangent line be sufficient to find the instantaneous
rate of change. As we progress through this chapter we will show that this definition allows us to calculate limits
of functions in a matter of seconds. This is because the derivative of a function allows us to know the average rate
of change at any point of f(x). For now however, we will provide the proper definitions. (This brief introduction
covers definitions 1 to 4).

1.1 Definition 1, Finding a Tangent Line to the Graph of a Function

The slope of the curve y = f (x ) at the point P(x0,f (x0)) is the number

lim
h→0

f(x0+h)−f(x0)
h (provided the limit exists)

The tangent line to the curve P is the line through P with this slope.

1.2 Definition 2, Rate of Change: Derivative at a Point

The derivative of a function f at a point x0, denoted f ′(x0), is

f ′(x0) = lim
h→0

f(x0+h)−f(x0)
h

provided that the limit exists.

1.3 Definition 3, The Derivative

The derivative of the function f(x) with respect to the variable x is the function f ′ whose value at x is

f ′(x) = lim
h→0

f(x+h)−f(x)
h ,

provided that the limit exists.
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1.4 Theorem 1, Differentiability Implies Continuity

If f has a derivative at x = c then f is continuous at x = c.

Proof Given that f ′(c) exists, we must show that lim
x→c

f(x) = f(c), or equivalently, that lim
h→0

f(c+ h) = f(c). If

h 6= 0, then

f(c+ h) = f(c) + (f(c+ h)− f(c)) (add and subtract f(c))

= f(c) +
f(c+ h)− f(c)

h
· h (Divide and multiply by h)

Now take limits as h→ 0. By Theorem 1 of section 2.2

lim
h→0

f(c+ h) = lim
h→0

f(c) + lim
h→0

f(c+ h)− f(c)

h
· lim
h→0

= f(c) + f ′(c) · 0

= f(c) + 0

= f(c)

.

1.5 Definition 4, Instantaneous rate of change

The Instantaneous rate of change of f with respect to x at x0 is the derivative

f ′(x0) = lim
h→0

f(x0 + h)− f(x0)

h
,

provided the limit exists.

1.6 Derivative Rules

1.6.1 Derivative of a Constant Function

If f has the constant value f(x) = c, then

df

dx
=

d

dx
(c) = 0.

1.6.2 Derivative of a Positive Integer Power

If n is a positive integer, then

d

dx
xn = nxn−1.

1.6.3 Derivative Constant Multiple Rule

If u is a differentiable function of x, and c is a constant, then

d

dx
(cu) = c

du

dx
.

1.6.4 Derivative Sum Rule

If u and v are differentiable functions of x, then their sum u + v is differentiable at every point where u and v are
both differentiable. At such points,

d

dx
(u+ v) =

du

dx
+
dv

dx
.
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1.6.5 Derivative of the Natural Exponential Function

d

dx
(ex) = ex

1.6.6 Derivative Product Rule

If u and v are differentiable at x, then so is their product uv, and

d
dx (uv) = u

dv

dx
+
du

dx
v.

1.6.7 Derivative Quotient Rule

IF u and v are differentiable at x and if v(x) 6= 0, then the quotient u/v is differentiable at x, and

d

dx
(
u

v
) =

v
du

dx
− udu

dx
v2

.

1.6.8 Irrational Exponents and Power Rule

For any x > 0 and for any real number n,

d

dx
xn = enln(x).

1.6.9 Derivative of trigonometric functions

1. d
dx (sinx) = cosx.

2. d
dx (cosx) = − sinx

3. d
dx (tanx) = sec2 x

4. d
dx (secx) = secx tanx

5. d
dx (cotx) = − csc2 x

6. d
dx (cscx) = − cscx cotx

1.6.10 Proving the derivative of sine = cosine

sin(x+ h) = sinx cosh+ cosx sinh

If f(x) = sinx, then

f ′(x) = lim
h→0

f(x+h)−f(x)
h = f ′(x) = lim

h→0

sin(x+h)−sin
h

= lim
h→0

= f ′(x) =
(sinx cosh+ cosx sinh)− sinx

h

= lim
h→0

sinx(cosh− 1) + cosx sinh

h

= lim
h→0

(
sinx · cosh− 1

h

)
+ lim
h→0

(
cosx · sinh

h

)

= sinx · lim
h→0

cosh− 1

h
+ cosx · lim

h→0

sinh

h

= sinx · 0 + cosx · 1 = cosx.
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1.7 Displacement, Velocity(Speed) and Acceleration

In order to better understand how displacement, velocity and acceleration are connected lets look at a real world
example. Suppose that a car at a red light starts to drive. We will then analyze the cars movements from 0 to 1
seconds. In the displacement graph (notice that f(x) is a curve) we show that within 1 second we moved a total
of 5 meters. If we then take the derivative of our function f(x) we will get a straight line for f ′(x) Now that
we have a straight line we can easily calculate the average rate of change using the points (0,0) and (1,5). This
will then give us a velocity of 5 meters per second. Lastly if we take the derivative of velocity (acceleration) our
function for f ′′(x) will become constant at the given slope of 5m/s. Notice how if we have a curved line f(x) it’s
derivative will produce a straight line f ′(x) and if we take the derivative of a straight line we will get a constant
f ′′(x), furthermore, if we were to look for the third derivative (jerk) we could say that the derivative of a constant
is zero.

1.8 Definition 5 - Velocity(Instantaneous Velocity)

Velocity is the derivative of position with respect to time. If a body’s position at time t is s = f(t), then the body’s
velocity at time t is

v(t) =
ds

dt
= lim

∆t→0

f(t+ ∆t)− f(t)

∆t
.

1.9 Definition 6 - Speed

Speed is the absolute value of velocity.

Speed = | v(t) | = | ds
dt
|

1.10 Definition 7 - Acceleration

Acceleration is the derivative of velocity with respect to time. If a body’s position at time t is s = f(t), then the
body’s acceleration at time t is

a(t) =
dv

dt
=
d2s

dt2
.

1.11 Definition 8 - Jerk

Jerk is the derivative of acceleration with respect to time

j(t) =
da

dt
=

d3

dt3

5



1.12 The Chain Rule

If f(u) is differentiable at the point u = g(x) and g(x) is differentiable at x, then the composite function (f ◦g)(x) =
f(g(x)) is differentiable at x and

(f ◦ g)′(x) = f ′(g(x)) · g′(x).

In Leibniz’s notation, if y = f(u) and u = g(x), then

dy
dx = dy

du ·
du
dx ,

where dy
du is evaluated at u = g(x).

1.12.1 Proving The Chain Rule

Let ∆u be the change in u when x changes by ∆x, so that

∆u = g(x+ ∆x)− g(x)

Then the corresponding change in y is

∆y = f(u+ ∆u)− f(u)

if ∆u 6= 0, we can write that the fraction ∆y/∆x as the product

∆y
∆x = ∆y

∆u ·
∆u
∆x

and take the limit as lim
δx→0

:

dy
dx = lim

∆x→0

∆y
∆x

dy
dx = lim

∆x→0

∆y
∆u ·

∆u
∆x

lim
∆x→0

∆y
∆u · lim

∆x→0

∆u
∆y

1.12.2 A Simple Derivative With Chain Rule

In order to display the chain rule lets derivative the following problem secx2. The thing we need to keep in mind
is that the derivative of a chain rule is the derivative of the outside times the derivative of the inside. We solve this
problem the following way;

First notice that secx2 = (secx)2

Now we take the derivative

d

dx
(secx)2 = 2secx · secx tanx

Once again, the derivative of the outside gives us 2secx and we multiply this by the derivative of the inside
secx tanx.

A little bit of rewriting gives us that
d

dx
(secx)2 = 2secx2 tanx.
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1.13 The Derivative Rule for Inverses - Theorem

If f has an interval I as domain and f ′(x) exists and is never zero on I, then f−1 is differentiable at every point in
its domain (the range of f). The value of (f−1)’ at a point b in the domain of f−1 is the reciprocal of the value of
f ′ at the point a = f−1(b):

(f−1)′(b) = 1
f ′(f−1(b))

1.14 The Number e as a limit - Theorem

The number e can be calculated as the limit

e = lim
x→0

(1 + x)
1
x .

1.14.1 Proving Theorem -

if f(x) = ln x then f ′(x) = 1/x, so f ′(1) = 1. But by the definition of a derivative,

f ′(1) = lim
h→0

f(1+h)−f(1)
h = lim

x→0

f(1+x)−f(1)
x

= lim
h→0

ln(1+x)−ln(1)
x = lim

x→0

1
x ln(1 + x)

= lim
x→0

ln(1 + x)1/x = ln[ lim
x→0

(1 + x)1/x].

Because f ′(1) = 1, we have

ln[ lim
x→0

(1 + x)1/x] = 1.

Therefore, exponentiating both sides we get

lim
x→0

(1 + x)1/x = e.

1.15 Definitions - Inverse Trigonometric Functions

1. y = arctanx is the number in (
π

2
,
π

2
) for which tan y = x.

2. y = arccotx is the number in (0,π) for which cot y = x.

3. y = arcsecx is the number in [0, π/2) ∪ (π/2 , π] for which sec y = x.

4. y = arccscx is the number in [-π/2, 0) ∪ (0 , π/2] for which csc y = x.

1.16 Linearization

if f is differentiable at x = a, then the approximating function

L(x) = f(a) + f ′(a)(x− a)

is the linearization of f at a. The approximation

f(x) ≈ L(x)

of f by L is the standard linear approximation of f at a. The point x = a is the center of the approximation.

1.16.1 What is a Linearization

The main idea a reader should get from a linearizations is that they help make better approximations of values.
We go deeper into this idea in Calculus 2 when we deal with Maclaurin and Taylor series.
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1.17 Differentials

Let y = f(x) be a differentiable function. The differential dx is an independent variable. The differential dy is

dy = f ′(x)dx.

1.17.1 Example of a Differential

When we deal with differentials we can treat them similar to any derivative problem. For instance we wanted to
find the differential of dy if y = x5 + 37x. The only thing we need to do is take the derivative, thus;

d

dx
y =

d

dx
(x5 + 37x) is equal to dy = (5x4 + 37)dx.
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